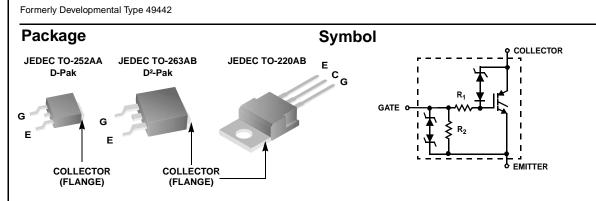
October 2004

# ISL9V3036D3S / ISL9V3036S3S / ISL9V3036P3 EcoSPARK<sup>™</sup> 300mJ, 360V, N-Channel Ignition IGBT

### **General Description**


FAIRCHILD

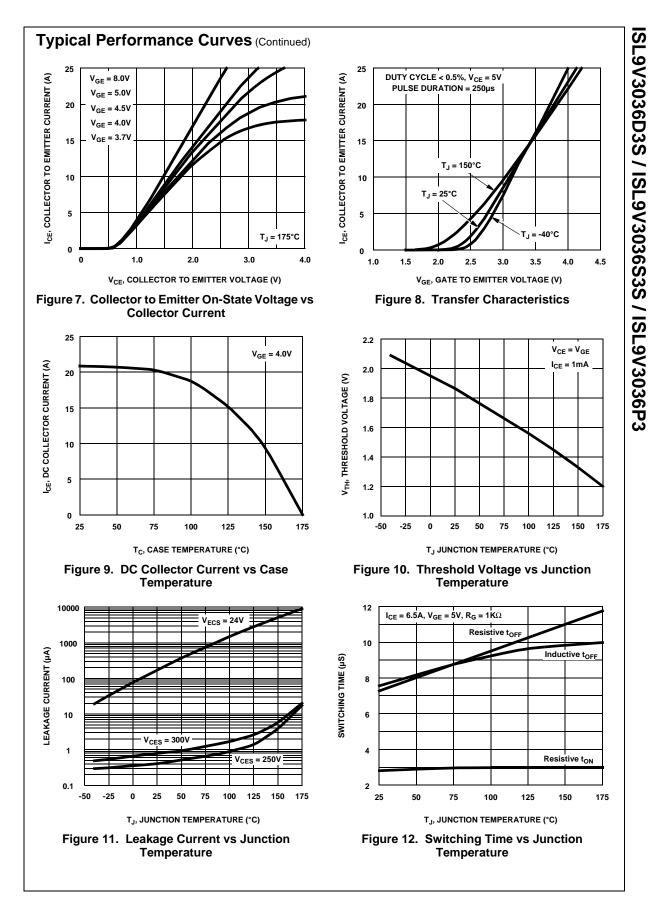
Applications

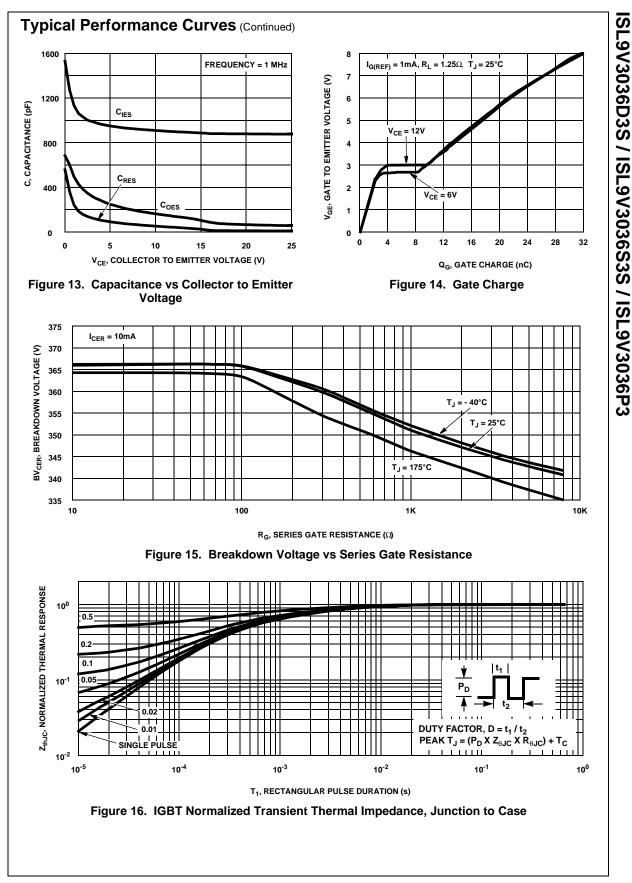
- Automotive Ignition Coil Driver CircuitsCoil- On Plug Applications
- The ISL9V3036D3S, ISL9V3036S3S, and ISL9V3036P3 are the next generation IGBTs that offer outstanding SCIS capability in the space saving D-Pak (TO-252), as well as the industry standard D<sup>2</sup>-Pak (TO-263) and TO-220 plastic packages. These devices are intended for use in automotive ignition circuits, specifically as a coil drivers. Internal diodes provide voltage clamping without the need for external components.

EcoSPARK<sup>™</sup> devices can be custom made to specific clamp voltages. Contact your nearest Fairchild sales office for more information.

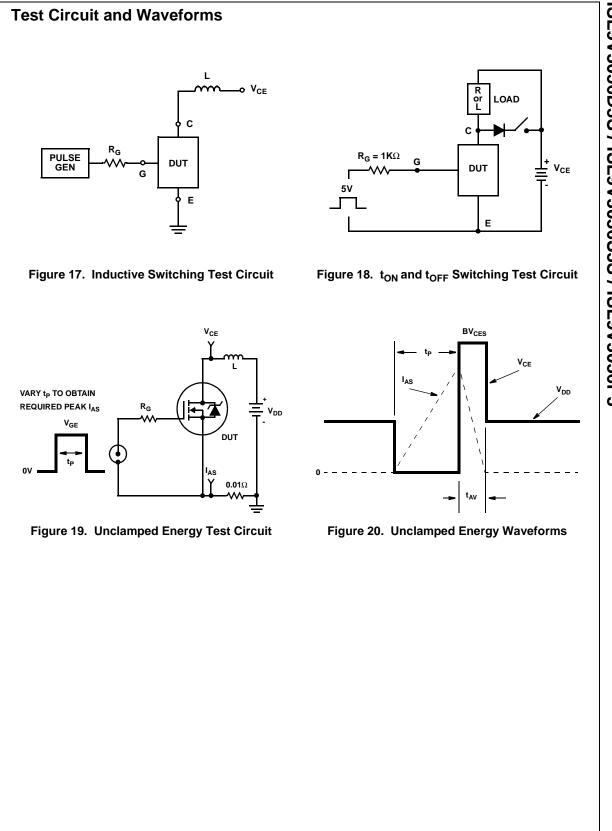
- Features
- Industry Standard D<sup>2</sup>-Pak package
- SCIS Energy = 300mJ at T<sub>J</sub> =  $25^{\circ}$ C
- Logic Level Gate Drive



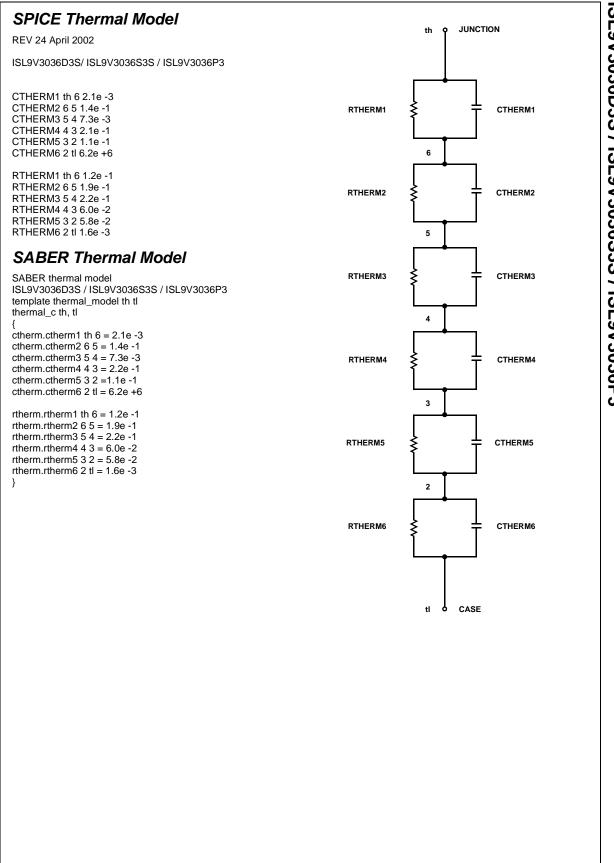


## Device Maximum Ratings T<sub>J</sub> = 25°C unless otherwise noted


| Symbol                                                                        | Parameter                                                                         | Ratings    |      |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------|------|
| BV <sub>CER</sub>                                                             | Collector to Emitter Breakdown Voltage (I <sub>C</sub> = 1 mA)                    | 360        | V    |
| BV <sub>ECS</sub>                                                             | Emitter to Collector Voltage - Reverse Battery Condition (I <sub>C</sub> = 10 mA) | 24         | V    |
| E <sub>SCIS25</sub>                                                           | T <sub>J</sub> = 25°C, I <sub>SCIS</sub> = 14.2A, L = 3.0 mHy                     | 300        | mJ   |
| E <sub>SCIS150</sub>                                                          | T <sub>J</sub> = 150°C, I <sub>SCIS</sub> = 10.6A, L = 3.0 mHy                    | 170        | mJ   |
| I <sub>C25</sub>                                                              | Collector Current Continuous, At T <sub>C</sub> = 25°C, See Fig 9                 | 21         | Α    |
| I <sub>C110</sub>                                                             | Collector Current Continuous, At T <sub>C</sub> = 110°C, See Fig 9                | 17         | Α    |
| V <sub>GEM</sub>                                                              | Gate to Emitter Voltage Continuous                                                | ±10        | V    |
| PD                                                                            | Power Dissipation Total $T_C = 25^{\circ}C$                                       | 150        | W    |
|                                                                               | Power Dissipation Derating $T_{C} > 25^{\circ}C$                                  | 1.0        | W/°C |
| TJ                                                                            | Operating Junction Temperature Range                                              | -40 to 175 | °C   |
| T <sub>STG</sub>                                                              | Storage Junction Temperature Range                                                | -40 to 175 | °C   |
| T <sub>L</sub> Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s) |                                                                                   | 300        | °C   |
| T <sub>pkg</sub>                                                              | Max Lead Temp for Soldering (Package Body for 10s)                                | 260        | °C   |
| ESD                                                                           | ESD Electrostatic Discharge Voltage at 100pF, 1500Ω                               |            | kV   |

| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | king  | Device                                 | Package                            | Reel Size                                                                         | 9                      | Tape  | Width | G    | luantity |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------|----------------------------------------|------------------------------------|-----------------------------------------------------------------------------------|------------------------|-------|-------|------|----------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |       | 330mm                                  |                                    |                                                                                   |                        | İ     | 2500  |      |          |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V3036S ISL9V3036S3ST TO-263AB |       | 330mm                                  |                                    | 24mm                                                                              |                        |       | 800   |      |          |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V3036P ISL9V3036P3 TO-220AA   |       | Tube                                   |                                    | N/A                                                                               |                        |       | 50    |      |          |
| lectrical CharacteristicsSymbolParameterTest ConditionsMinTypMaxUnitsff State Characteristics $\mathbb{BV}_{CER}$ Collector to Emitter Breakdown Voltage $ _{C} = 2mA, V_{CE} = 0, R_G = 1K\Omega, See Fig. 15$<br>T_g = 40 to 150°C330360390V $\mathbb{BV}_{CES}$ Collector to Emitter Breakdown Voltage $ _{C} = 10mA, V_{CE} = 0, R_G = 0, R_G = 0, R_G = 10, R_V = 0, R_G = 0, R_G = 10, R_V = 0, R_G = 10, R_G $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V3036D ISL9V3036D3S TO-252AA  |       | Tube                                   |                                    | N/A                                                                               |                        |       | 75    |      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |       |                                        |                                    |                                                                                   |                        | 1     | N/A   |      | 50       |
| $      ff State Characteristics \\            BV_{CER} Collector to Emitter Breakdown Voltage \begin{vmatrix} c = 2mA, V_{GE} = 0, \\ R_G = 1K\Omega, See Fig. 15 \\ T_J = 40 to 150^{\circ}C \\ \hline \\ BV_{CES} \\ \hline \\ Collector to Emitter Breakdown Voltage \\ c = 107A, V_{GE} = 0, \\ R_G = 0, See Fig. 15 \\ T_J = 40 to 150^{\circ}C \\ \hline \\ BV_{CES} \\ \hline \\ Ewitter to Collector Breakdown Voltage \\ c = 75mA, V_{GE} = 0, \\ R_G = 0, See Fig. 15 \\ T_J = 40 to 150^{\circ}C \\ \hline \\ BV_{CES} \\ \hline \\ Cellector to Emitter Breakdown Voltage \\ c = 8250V, \\ R_G = 1K\Omega \\ See Fig. 11 \\ \hline \\ T_C = 25^{\circ}C \\ \hline \\ \hline \\ CER \\ \hline \\ Cellector to Emitter Breakdown Voltage \\ c = 162, 225^{\circ}C \\ \hline \\ \hline \\ Cer \\ \hline \\ \hline \\ Cer \\ \hline \\ \hline \\ Cer \\ \hline \\ Cer \\ \hline \\ \hline \\ Ce$ |                               | al C  |                                        |                                    |                                                                                   |                        | Min   | Typ   | Max  | Units    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                             | Char  |                                        |                                    | 1631 0011                                                                         | ultions                | WIIII | тур   | Max  | Units    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |       |                                        | akdown Voltage                     | $R_G = 1K\Omega$ , See Fig. 15                                                    |                        | 330   | 360   | 390  | V        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BV <sub>CES</sub>             | Colle | Collector to Emitter Breakdown Voltage |                                    | $I_{C} = 10$ mA, $V_{GE} = 0$ ,<br>R <sub>G</sub> = 0, See Fig. 15                |                        | 350   | 380   | 410  | V        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BV <sub>ECS</sub>             | Emit  | Emitter to Collector Breakdown Voltage |                                    | I <sub>C</sub> = -75mA, V <sub>GE</sub> = 0V,                                     |                        | 30    | -     | -    | V        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BV <sub>GES</sub>             | Gate  | e to Emitter Breakdo                   | wn Voltage                         | $I_{GES} = \pm 2mA$                                                               |                        | ±12   | ±14   | -    | V        |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I <sub>CER</sub>              | Colle | ector to Emitter Lea                   | kage Current                       |                                                                                   | -                      | -     | -     | 25   | μA       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |       |                                        |                                    |                                                                                   | -                      | -     | -     | 1    | mA       |
| R1Series Gate Resistance-70- $\Omega$ R2Gate to Emitter Resistance10K-26K $\Omega$ n State Characteristics $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 6A$ ,<br>$V_{GE} = 4V$ $T_C = 25^{\circ}C$ ,<br>See Fig. 3-1.251.60V $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$ ,<br>$V_{GE} = 4.5V$ $T_C = 150^{\circ}C$ ,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I <sub>ECS</sub>              | Emit  | ter to Collector Lea                   | kage Current                       |                                                                                   |                        | -     | -     | 1    | mA       |
| R2Gate to Emitter Resistance10K-26KΩn State Characteristics $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 6A$ ,<br>$V_{GE} = 4V$ $T_C = 25^\circ C$ ,<br>See Fig. 3-1.251.60V $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$ ,<br>$V_{GE} = 4.5V$ $T_C = 150^\circ C$ ,<br>See Fig. 4-1.581.80V $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$ ,<br>$V_{GE} = 4.5V$ $T_C = 150^\circ C$ ,<br>$V_{GE} = 4.5V$ -1.902.20Vynamic Characteristics $Q_{G(ON)}$ Gate to Emitter Threshold Voltage $I_C = 10A$ , $V_{CE} = 12V$ ,<br>$V_{CE} = 5V$ , See Fig. 14-17-nC $V_{GE(TH)}$ Gate to Emitter Plateau Voltage $I_C = 10A$ ,<br>$V_{CE} = V_{GE}$ ,<br>$See Fig. 10-1.8VV_{GEP}Gate to Emitter Plateau VoltageI_C = 10A,V_{CE} = 14V, T_C = 150^\circ C0.75-1.8VV_{GEP}Gate to Emitter Plateau VoltageI_C = 10A,V_{CE} = 14V, R_L = 1\Omega,V_{CE} = 12V-3.0-Vwitching CharacteristicsV_{CE} = 14V, R_L = 1\Omega,V_{CE} = 5V, R_G = 1K\OmegaT_J = 25^\circ C, See Fig. 12-0.74\mu st_{(QON)R}Current Turn-On Delay Time-ResistiveT_J = 25^\circ C, See Fig. 12-2.815\mu st_{(CFF)L}Current Rise Time-ResistiveT_J = 25^\circ C, See Fig. 12-2.815\mu sSCISSelf Clamped Inductive Switching$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |       |                                        |                                    | Fig. 11                                                                           | T <sub>C</sub> = 150°C | -     | -     | 40   |          |
| <b>State Characteristics</b> $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 6A$ ,<br>$V_{GE} = 4V$ $T_C = 25^{\circ}C$ ,<br>See Fig. 3-1.251.60V $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$ ,<br>$V_{GE} = 4.5V$ $T_C = 150^{\circ}C$ ,<br>See Fig. 4-1.581.80V $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 10A$ ,<br>$V_{GE} = 4.5V$ $T_C = 150^{\circ}C$ ,<br>See Fig. 4-1.581.80V $V_{CE(SAT)}$ Collector to Emitter Saturation Voltage $I_C = 15A$ ,<br>$V_{GE} = 4.5V$ $T_C = 150^{\circ}C$ -1.902.20Vynamic Characteristics $\Omega_{G(ON)}$ Gate Charge $I_C = 10A$ , $V_{CE} = 12V$ ,<br>$V_{GE} = 5V$ , See Fig. 14-17-nC $V_{GE(TH)}$ Gate to Emitter Threshold Voltage $I_C = 10mA$ ,<br>$V_{CE} = V_{GE}$ ,<br>See Fig. 10 $T_C = 25^{\circ}C$ 1.3-2.2V $V_{GEP}$ Gate to Emitter Plateau Voltage $I_C = 10A$ , $V_{CE} = 12V$ ,<br>$V_{CE} = 10A$ , $V_{CE} = 12V$ -1.8V $V_{GEP}$ Gate to Emitter Plateau Voltage $I_C = 10A$ , $V_{CE} = 12V$ -3.0-Vwitching Characteristics $V_{CE} = 10A$ , $V_{CE} = 14V$ , $R_L = 1\Omega$ -0.74 $\mu s$ $t_{q(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V$ , $R_L = 1\Omega$ -0.74 $\mu s$ $t_{q(OFF)L}$ Current Rise Time-Resistive $V_{CE} = 300V$ , $R_L = 500\mu$ , $R_L = 50\mu$ , $R_L = 12V$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | _     |                                        |                                    |                                                                                   | -                      | 70    | -     |      |          |
| $\begin{array}{ c c c c } \hline V_{CE}(sh) & V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |       |                                        | ration Voltage                     |                                                                                   | See Fig. 3             | -     | 1.25  | 1.60 | V        |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>CE(SAT)</sub>          | Colle | ector to Emitter Satu                  | ration Voltage                     |                                                                                   |                        | -     | 1.58  | 1.80 | V        |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>CE(SAT)</sub>          | Colle | ector to Emitter Satu                  | ration Voltage                     | -                                                                                 | T <sub>C</sub> = 150°C | -     | 1.90  | 2.20 | V        |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ynamic                        | Char  | acteristics                            |                                    |                                                                                   |                        |       |       |      |          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q <sub>G(ON)</sub>            | Gate  | e Charge                               |                                    | I <sub>C</sub> = 10A, V <sub>CE</sub> = 12V,<br>V <sub>GE</sub> = 5V, See Fig. 14 |                        | -     | 17    | -    | nC       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V <sub>GE(TH)</sub>           | Gate  | e to Emitter Thresho                   | old Voltage                        |                                                                                   |                        | 1.3   | -     | 2.2  |          |
| witching Characteristics $t_{d(ON)R}$ Current Turn-On Delay Time-Resistive $V_{CE} = 14V, R_L = 1\Omega$ -0.74 $\mu s$ $t_{rR}$ Current Rise Time-Resistive $V_{GE} = 5V, R_G = 1K\Omega$ -2.17 $\mu s$ $t_{dOFF)L}$ Current Turn-Off Delay Time-Inductive $V_{CE} = 300V, R_L = 500\mu H,$ -4.815 $\mu s$ $t_{fL}$ Current Fall Time-Inductive $V_{GE} = 5V, R_G = 1K\Omega$ -2.815 $\mu s$ $t_{fL}$ ScISSelf Clamped Inductive Switching $T_J = 25^{\circ}C, See Fig. 12$ -300mJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |       |                                        |                                    | See Fig. 10                                                                       | 0                      | 0.75  | -     | 1.8  | -        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $V_{GEP}$                     | Gate  | e to Emitter Plateau                   | Voltage                            | I <sub>C</sub> = 10A,                                                             | $V_{CE} = 12V$         | -     | 3.0   | -    | V        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |       |                                        |                                    |                                                                                   | 1.0                    |       | -     | 1    | 1        |
| T_ICurrent Turn-Off Delay Time-InductiveT_J = 25°C, See Fig. 12Image: Constraint of the second sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |       |                                        |                                    |                                                                                   |                        | -     |       |      | -        |
| $ \begin{array}{c c} \hline t_{fL} & Current Fall Time-Inductive \\ \hline t_{fL} & Current Fall Time-Inductive \\ \hline t_{J} = 25^{\circ}C, See Fig. 12 \\ \hline SCIS & Self Clamped Inductive Switching \\ \hline T_{J} = 25^{\circ}C, L = 3.0 \text{ mH}, \\ \hline - & - & 300 \\ \hline mJ \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |       |                                        | T <sub>J</sub> = 25°C, See Fig. 12 |                                                                                   | -                      |       |       |      |          |
| TLTJ = 25°C, See Fig. 12SCISSelf Clamped Inductive SwitchingTJ = 25°C, L = 3.0 mH,300 mJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | -     |                                        |                                    |                                                                                   | -                      |       |       | -    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |       |                                        |                                    | T <sub>J</sub> = 25°C, See Fig. 12                                                |                        |       |       |      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3013                          | Seif  | Ciampeu muucuve                        | ownerning                          |                                                                                   |                        | -     | -     | 300  | IIIJ     |


ISL9V3036D3S / ISL9V3036S3S / ISL9V3036P3 Rev. C3, October 2004








ISL9V3036D3S / ISL9V3036S3S / ISL9V3036P3 Rev. C3, October 2004



ISL9V3036D3S / ISL9V3036S3S / ISL9V3036P3



ISL9V3036D3S / ISL9V3036S3S / ISL9V3036P3

#### TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| ACEx™                                                                                                                          | FAST®               | ISOPLANAR™                     | Power247™                                            | Stealth™              |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------|------------------------------------------------------|-----------------------|
| ActiveArray™                                                                                                                   | FASTr™              | LittleFET™                     | PowerEdge™                                           | SuperFET™             |
| Bottomless™                                                                                                                    | FPS™                | MICROCOUPLER™                  | PowerSaver™                                          | SuperSOT™-3           |
| CoolFET™                                                                                                                       | FRFET™              | MicroFET™                      | PowerTrench <sup>®</sup>                             | SuperSOT™-6           |
| CROSSVOLT™                                                                                                                     | GlobalOptoisolator™ | MicroPak™                      | QFET <sup>®</sup>                                    | SuperSOT™-8           |
| DOME™                                                                                                                          | GTO™                | MICROWIRE™                     | QS™                                                  | SyncFET™              |
| EcoSPARK™                                                                                                                      | HiSeC™              | MSX™                           | QT Optoelectronics <sup>™</sup>                      | TinyLogic®            |
| E <sup>2</sup> CMOS <sup>™</sup>                                                                                               | I²C™                | MSXPro™                        | Quiet Series <sup>™</sup>                            | TINYOPTO™             |
| EnSigna™                                                                                                                       | <i>i-Lo</i> ™       | OCX™                           | RapidConfigure™                                      | TruTranslation™       |
| FACT™                                                                                                                          | ImpliedDisconnect™  | OCXPro™                        | RapidConnect™                                        | UHC™                  |
| FACT Quiet Series <sup>™</sup>                                                                                                 |                     | OPTOLOGIC <sup>®</sup>         | µSerDes™                                             | UltraFET <sup>®</sup> |
| Across the board. Around the world. <sup>™</sup><br>The Power Franchise <sup>®</sup><br>Programmable Active Droop <sup>™</sup> |                     | OPTOPLANAR™<br>PACMAN™<br>POP™ | SILENT SWITCHER <sup>®</sup><br>SMART START™<br>SPM™ | VCX™                  |

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

#### **PRODUCT STATUS DEFINITIONS**

#### **Definition of Terms**

| Datasheet Identification | Product Status            | Definition                                                                                                                                                                                                                        |
|--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or<br>In Design | This datasheet contains the design specifications for<br>product development. Specifications may change in<br>any manner without notice.                                                                                          |
| Preliminary              | First Production          | This datasheet contains preliminary data, and<br>supplementary data will be published at a later date.<br>Fairchild Semiconductor reserves the right to make<br>changes at any time without notice in order to improve<br>design. |
| No Identification Needed | Full Production           | This datasheet contains final specifications. Fairchild<br>Semiconductor reserves the right to make changes at<br>any time without notice in order to improve design.                                                             |
| Obsolete                 | Not In Production         | This datasheet contains specifications on a product<br>that has been discontinued by Fairchild semiconductor.<br>The datasheet is printed for reference information only.                                                         |
|                          |                           | Rev. 113                                                                                                                                                                                                                          |